easystats라는 프로젝트에서 만든 시각화 보조 패키지
easystats is a suite of R packages designed to make the use of advanced statistical techniques easy.
library(see) library(ggplot2)
modern
테마와 flat design colours
를 이용한 더 보기 좋은 산점도
data(iris) ggplot(iris, aes(x=Sepal.Width, y=Sepal.Length, color=Species)) + geom_point2(size=4, alpha=0.5) + scale_color_flat_d() + theme_modern()
blackboard
테마를 이용한 바이올린 플랏과 material design colours
ggplot(iris, aes(x=Species, y=Sepal.Length, fill=Species)) + geom_violindot(fill_dots="white") + scale_fill_material_d() + theme_blackboard()
Abyss
테마
library(bayestestR) library(rstanarm) model <- rstanarm::stan_glm(mpg~wt+gear+cyl+disp, data=mtcars)
SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1). Chain 1: Chain 1: Gradient evaluation took 0 seconds Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds. Chain 1: Adjust your expectations accordingly! Chain 1: Chain 1: Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup) Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup) Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup) Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup) Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup) Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup) Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling) Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling) Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling) Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling) Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling) Chain 1: Iteration: 2000 / 2000 [100%] (Sampling) Chain 1: Chain 1: Elapsed Time: 0.147 seconds (Warm-up) Chain 1: 0.172 seconds (Sampling) Chain 1: 0.319 seconds (Total) Chain 1: SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2). Chain 2: Chain 2: Gradient evaluation took 0 seconds Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds. Chain 2: Adjust your expectations accordingly! Chain 2: Chain 2: Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup) Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup) Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup) Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup) Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup) Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup) Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling) Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling) Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling) Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling) Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling) Chain 2: Iteration: 2000 / 2000 [100%] (Sampling) Chain 2: Chain 2: Elapsed Time: 0.17 seconds (Warm-up) Chain 2: 0.157 seconds (Sampling) Chain 2: 0.327 seconds (Total) Chain 2: SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3). Chain 3: Chain 3: Gradient evaluation took 0 seconds Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds. Chain 3: Adjust your expectations accordingly! Chain 3: Chain 3: Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup) Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup) Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup) Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup) Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup) Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup) Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling) Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling) Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling) Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling) Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling) Chain 3: Iteration: 2000 / 2000 [100%] (Sampling) Chain 3: Chain 3: Elapsed Time: 0.182 seconds (Warm-up) Chain 3: 0.219 seconds (Sampling) Chain 3: 0.401 seconds (Total) Chain 3: SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4). Chain 4: Chain 4: Gradient evaluation took 0 seconds Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds. Chain 4: Adjust your expectations accordingly! Chain 4: Chain 4: Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup) Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup) Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup) Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup) Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup) Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup) Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling) Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling) Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling) Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling) Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling) Chain 4: Iteration: 2000 / 2000 [100%] (Sampling) Chain 4: Chain 4: Elapsed Time: 0.197 seconds (Warm-up) Chain 4: 0.161 seconds (Sampling) Chain 4: 0.358 seconds (Total) Chain 4:
result <- equivalence_test(model, ci=c(.89, .95)) plot(result) + theme_abyss() + scale_fill_flat()